Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers
نویسندگان
چکیده
The need for more energy dense and scalable Li-ion battery electrodes has become increasingly pressing with the ushering in of more powerful portable electronics and electric vehicles (EVs) requiring substantially longer range capabilities. Herein, we report on the first synthesis of nano-silicon paper electrodes synthesized via magnesiothermic reduction of electrospun SiO2 nanofiber paper produced by an in situ acid catalyzed polymerization of tetraethyl orthosilicate (TEOS) in-flight. Free-standing carbon-coated Si nanofiber binderless electrodes produce a capacity of 802 mAh g(-1) after 659 cycles with a Coulombic efficiency of 99.9%, which outperforms conventionally used slurry-prepared graphite anodes by over two times on an active material basis. Silicon nanofiber paper anodes offer a completely binder-free and Cu current collector-free approach to electrode fabrication with a silicon weight percent in excess of 80%. The absence of conductive powder additives, metallic current collectors, and polymer binders in addition to the high weight percent silicon all contribute to significantly increasing capacity at the cell level.
منابع مشابه
Multiscale carbon structures fabricated by direct micropatterning of electrospun mats of SU-8 photoresist nanofibers.
A novel method for the direct fabrication of arrays of micropatterned polymeric and carbon nanofiber structures on any substrate is developed. First SU-8, an epoxy-based negative photoresist, is electrospun under optimized conditions to produce a layer of polymeric nanofibers. Next, this nanofibrous mat is micropatterned using photolithography, and finally, pyrolysis produces ordered arrays of ...
متن کاملFabrication and characterization of vertically aligned carbon nanofiber electrodes for biosensing applications
We describe recent experiments aimed at using carbon nanofibers for biosensing applications. Vertically aligned carbon nanofibers are grown on molybdenum electrodes to provide electrical contact to the nanofibers. Upon exposure to electrolyte solutions, we find that short nanofibers of <1 Am length can be wet and dried without significant mechanical disruption. However, longer fibers are prone ...
متن کاملRecent Advances in Electrospun Nanofiber Interfaces for Biosensing Devices
Electrospinning has emerged as a very powerful method combining efficiency, versatility and low cost to elaborate scalable ordered and complex nanofibrous assemblies from a rich variety of polymers. Electrospun nanofibers have demonstrated high potential for a wide spectrum of applications, including drug delivery, tissue engineering, energy conversion and storage, or physical and chemical sens...
متن کاملPreparation of Surface Adsorbed and Impregnated Multi-walled Carbon Nanotube/Nylon-6 Nanofiber Composites and Investigation of their Gas Sensing Ability
We have prepared electrospun Nylon-6 nanofibers via electrospinning, and adsorbed multi-walled carbon nanotubes (MWCNTs) onto the surface of Nylon-6 fibers using Triton(®) X-100 to form a MWCNTs/Nylon-6 nanofiber composite. The dispersed MWCNTs have been found to be stable in hexafluoroisopropanol for several months without precipitation. A MWCNTs/Nylon-6 nanofiber composite based chemical sens...
متن کاملElectrospun metal nanofiber webs as high-performance transparent electrode.
Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as rep...
متن کامل